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Abstract.
Linear Landau damping and nonlinear wave-particle trapping oscillations are observed with

m0 = 0 standing plasma waves (Trivelpiece-Gould modes) in a trapped pure electron plasma. The
measured linear damping rate (10-3 < y/to < 10-1) agrees quantitatively with Landau damping
theory for moderate plasma temperatures (1 < T < 3 eV), and exceedingly low wave amplitudes
(Sn/n < 10-6). At larger amplitudes, the wave initially damps at the Landau rate, then develops
trapping oscillations at frequency (i)tr, causing the effective damping rate to decrease with amplitude
as first predicted by O'Neil in 1965. For comparison, the measured damping rate is observed
to decrease dramatically when the resonant particles are eliminated by truncating the nominally
Maxwellian velocity distribution.

INTRODUCTION

The first experiments demonstrating linear Landau damping [1] were reported over 30
years ago by measuring the spatial damping length (ki) of Trivelpiece-Gould (T-G)
waves in an open-ended neutral plasma column [2, 3]. T-G waves are longitudinal elec-
trostatic plasma oscillations (Langmuir waves), modified by the cylindrical boundary
[4]. Landau damping occurs when resonant electrons absorb energy from the wave; these
electrons have axial velocity v, = vph, where Vph is the wave phase velocity. Nonlinear
trapping oscillations were also measured in these plasmas [5, 6]. These oscillations in
the wave amplitude occur when the resonant electrons become trapped and oscillate in
the wave potential. Other nonlinear effects such as plasma wave echoes [7] and sideband
frequency generation [8] were also observed. Even with this long history, the nonlinear
regime of Landau damping and the long time behavior of Landau damped waves con-
tinues to be a subject of investigation [9, 10].

Pure electron plasmas exhibit the same plasma wave-particle resonance phenomena,
since the neutral plasma ions do not participate in the dynamics [12]. Trivelpiece-Gould
waves are also found in non-neutral plasmas contained in cylindrical Penning-Malmberg
traps. For example, the torque from the "rotating wall" perturbations used for steady
state confinement of electron [13] and positron plasmas [14] has been shown to be
due to the excitation of asymmetric (me 1 or 2) T-G modes. Further, the spectrum
of thermally-excited me = 0 T-G modes has been measured in an electron plasma near
thermal equilibrium [15].
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FIGURE 1. Schematic of EV Penning-Malmberg trap.

In this letter, we describe measurements of linear and nonlinear damping of stand-
ing me = 0 T-G waves in a pure electron plasma. The dispersion relation for these long
wavelength modes is dominated by the finite radial size, with phase velocity approx-
imately independent of mode frequency; and this frequency regime has not been pre-
viously studied. In the small amplitude regime, the measured temporal damping rates
()i =_ -y) show quantitative agreement with the predictions of linear Landau damping.
Experiments also show that larger amplitude waves exhibit trapping oscillations; and
that these oscillations decrease the wave damping, as first predicted by O'Neil [16].
When the resonant particles are eliminated experimentally by truncating the nominally
Maxwellian velocity distribution, the measured damping rates decrease dramatically [3].

APPARATUS

Two different Penning-Malmberg electron traps were used, both represented schemat-
ically by Fig. 1. The two principle differences between the traps are magnetic field
strength and typical plasma radius. The IV machine has a superconducting solenoid,
giving an axial field of 30 kGauss; whereas the EV machine has a water-cooled solenoid
with an axial field of 380 Gauss. In both traps, electrons from a tungsten filament are
confined in a series of conducting cylinders in a ultrahigh vacuum with background
pressure P < 10-t1 Torr.

The IV machine has a wall radius of R, = 2.86 cm, with a plasma radius of RI,
0.2 cm and plasma length Lp ,: 41 cm (aspect ratio Lp/Rp ,z 200). The EV machine has
R, = 3.51 cm, with RP ; 1.0 cm and LP • 24 cm (aspect ratio z 24).

The traps are operated in an inject-hold-dump cycle. Both machines trap approx-
imately 109 electrons total; with a central density no ; 107 cm- 3 for EV, and no
2 x 108 cm-3 for IV. The electron source for IV is in the fringing magnetic field, so
the electrons are compressed to a smaller radius and correspondingly a higher density.
The plasma density is measured by dumping the plasma through a movable hole onto a
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Faraday cup.
The EV machine uses a magnetic "beach analyzer" for measurement of the perpen-

dicular plasma temperature [17]. The parallel temperature is measured on IV and EV
by slowly ramping the dump gate voltage while measuring the collected charge as
a function of confinement voltage. The escaping charge is fit to the exponential tail
of a Maxwellian to give an estimate that is accurate to about 10% for temperatures
T > 0.2 eV [18]. The relatively rapid perp-to-parallel thermal equilibration rate [19, 17]
(V 1  103 sec- 1 for IV and vai ý 102 sec 1 for EV) allows these experiments to be
described by a single temperature [TL = T1 1 = T(r)]. Furthermore, the radial temperature
variations are small enough to be ignored here.

The T-G modes are excited by a short burst (10 cycles) at the wave resonant frequency
(0)0) applied to cylinder R4. The resulting wave density fluctuations induce image
charges on cylinder R2, and these are detected using either a low-noise current amplifier
or a low-noise 50-ohm RF amplifier. The received signal is filtered and fed into a RF
spectrum analyzer tuned to the resonant frequency with a bandwidth of 300 kHz. A
separate signal generator is usually attached to cylinder R3 to provide controlled heating
of the plasma [20]. The heating frequency is set close to the thermal bounce frequency
(fb = V/2Lp), which is less than 1/3 wo, assuring no coupling to the T-G mode.

For these experiments we launch the m, = 1, mr = 1 T-G mode, also known as
the "sloshing" mode. This is the lowest order longitudinal oscillation of the plasma
column, and has the nodes of the axial electric field (Ez) at the ends. This means that
the wavelength X is approximately twice Lp, with wavenumber k, = 2it/X• 7t/Lp.
Numerical simulations have shown that the finite length of the plasma column acts to
slightly increase the effective wavelength [21]. thus making the effective wavenumber
keff slightly smaller than 7T/Lp. Numerical solutions of the drift-kinetic equations for an
infinite-length column with n(r) and T(r) determine a wavenumber k- which gives the
observed mode frequency (o. We presume that the finite-length column has kff -= k,
and calculate the wave velocity as vph = 0o/keff.

THEORY

Landau was the first to describe the resonant interaction of electrostatic waves with
particles traveling at the wave phase velocity, Vph [1]. Depending on the slope of the
particle velocity distribution at vph, this resonant interaction can cause either wave
damping or wave growth. For Langmuir waves in an infinite homogeneous plasma with
a Maxwellian velocity distribution, Landau calculated a damping YLD given by

Y'L D " ( p ) exp [- (1)'-) '

with Vph = wo/keff and V = VrTIm. This equation comes from an approximate expansion
of the Zeta function to lowest order in the parameter V/Vph [22]. In the early experiments
by Malmberg et al. [2], a similar expression for ki/kr was tested by varying the wave
phase velocity and measuring the corresponding spatial damping length ki using a
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FIGURE 2. Decay of received amplitude versus time for various excitation amplitudes (V).. The
waves were excited by a 10 cycle burst at 3.2 Mjlz (V2 /Vh = .08).

plasma at a fixed temperature. For our experiments, the mode frequency is approximately

kzf' + 3 ( )2](2

where I/k±R, 1n(,IR 1 and ,opr, = so the phase velocity is relatively

insensitive to any change in frequency. In order to vary the damping rate we heat the
plasma. This changes V at roughly constant Vph, enabling a comparison to Eq. (1). The
slight temperature dependence of the phase velocity is accounted for in the estimates of
V/Vph.

RESULTS

Figure 2 shows a logarithmic plot of the received wave amplitude versus time for
different excitation amplitudes (Vexc). Three observations can be made: First, the peak of
the received wave amplitude A,, depends linearly on the amplitude Vexc of the drive, as
expected for linear waves. Second, for low amplitudes (Vexc < 4 mV), the wave damps
exponentially, at a rate independent of amplitude; this is the regime of linear Landau
damping. Third, as Vexc is increased above 8 mV, we observe the appearance of nonlinear
temporal oscillations that inhibit the damping of the wave. At larger amplitudes (V,,
20 mV), we observe that after the fast initial damping the wave exhibits oscillations with
very little average amplitude decay.

From the data in Figure 2, we define three quantities for comparison to theory. First,
the initial damping of the wave is defined to be Ylin. Second, the (slower) average decay
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FIGURE 3. Measured linear damping rate compared to prediction of Landau.

rate of the wave over 200,us is defined to be Yavg. Third, we define a trapping frequency

Otr by measuring the time At between the peak of the excitation and the peak of the first
oscillation, with (Otr =_ 21T/At.

Data sets similar to Figure 2 were taken over a range of plasma temperatures, thereby-2 2
varying the value of V/vph. Figure 3 is a plot of the initial damping Ylin versus V /vph,
along with the Landau prediction from Eq. (1). For high temperatures, the data agrees
with the linear theory of Landau over 2 decades in damping, an apparent 50% uncertainty
in V2/V2h. At lower temperatures, where Landau damping is expected to be small, we

observe a damping "floor" of 10- -_0-4 which is likely caused by resistive dissipation
in the measurement circuit [15].

The nonlinear effects are summarized in Figure 4, where the normalized average
damping rate Yavg/yli, and the normalized trapping frequency (Otr/ylin are plotted ver-
sus wave excitation amplitude Vexc. Also plotted is a dashed line showing the expected

scaling of (Otr o Vexc2 . The trapping frequency shows good agreement with the expected
scaling at high amplitudes, but shows a small systematic deviation at the lowest ex-
citation amplitudes. This deviation is expected because for wave amplitudes such that
(Otr/ylin -1 there is significant damping before the first trapped particles can execute
a complete trapping oscillation, leading to an effective trapping field that is slightly
smaller than initially. This effect has been seen in numerical self-consistent calculations
of the damping rate as a function of time [23] and in experiments by Franklin [24].

The average damping rate Yavg is seen in Figure 4 to drop by more than an order of
magnitude from the Landau rate as (0 tr becomes larger than Ylin. This drop is expected,
since trapped particles cause a periodic re-growth of the wave. However, theory pre-
dicts the wave damping should eventually become zero, in the absence of other decay
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FIGURE 4. Normalized trapping frequency and normalized average decay rate versus excitation volt-
age. The dashed curve shows the expected scaling of trapping frequency with amplitude.

mechanisms. The experiments always measure some amount of residual damping. This
residual damping, also seen clearly at low temperatures in Fig. 3, has been identified as
due to resistive elements in the excitation and detection circuits [151. In Figure 4, the
small damping rate (Yavg/Ylin 'ýý .03) at large amplitudes corresponds to an effective real
part of the external impedance of about 5 Q [ 15].

We have verified that ylin is due to resonant particles at Vph by experimentally trun-
cating the particle velocity distribution. When the confinement gate is ramped down,
the highest energy particles are the first to escape. To measure damping on a truncated
distribution, the plasma is first prepared by ejecting the high energy particles, then the
wave is excited and the damping rate measured. It was observed that if the electrons
with v _> vph were ejected over most of the plasma radius, then the fast initial damping
does not occur; the wave only damps at the residual resistive-damping rate. This quali-
tatively shows the sensitivity of the damping rate on the details of the tail of the velocity
distribution, as would be expected for Landau damping.

CONCLUSIONS

At very small wave amplitudes, linear Landau damping is observed over the range
10-3 < yl'n/() < 10-1. There appears to be some systematic shift between the two
different apparatuses used. This is most likely due to the different geometry, namely
the plasma aspect ratio (Rp/Lp), and the closeness of the plasma to the wall (RpI/R1,).
For instance, the overlap of the mode potential and the plasma density shows substantial
radial dependence. These profile effects could easily lead to errors in the estimated phase
velocity and thus lead to a systematic error in applying the theory.
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From the measured received wall voltage we can calculate the magnitude of E,
for the launched T-G mode. This value for E, gives an expected trapping frequency
(otr -= kE/m) that differs from the measured value by a factor of 3. However,
uncertainties in the detector calibration and theoretical predictions have made it difficult
to make an absolute comparison.

Unlike the early experiments [5, 6], the spectrum of T-G modes is discrete at these
long wavelengths. This means we do not expect to have any sideband instability develop,
and experimentally none have been observed. This unique characteristic should allow
future experiments to contribute to the debate over the long time behavior of Landau
damped waves [9, 25, 261.
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